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Abstract

Quickest detection of the onset of a signal is a common problem in many applications. For example,
consider the detection of a sonar contact as it enters the sonar’s detection range. While Page’s test
is known to optimally provide the lowest average delay before detection (i.e., D̄ or detection latency)
for a constrained average time between false alarms, it does not necessarily maximize the probability
of detecting (Pd) an ephemeral signal (e.g., a sonar contact passing through a convergence zone).
In such cases a common alternative is the sliding m-of-n detector where a detection is declared
when m successes are observed within n of the most recent trials (e.g., 3 detections during the
5 most recent pings). Techniques for evaluating or approximating the performance measures of
the sliding m-of-n detector are developed and used to optimally design the detector. As expected,
Page’s test outperforms the sliding m-of-n detector with respect to D̄, except under certain cases
of significant mismatch between the assumed and actual single-trial success probability. However,
for finite-duration signals, the sliding m-of-n detector outperforms Page’s test with respect to Pd
or robustness in false-alarm rate to mismatch in design assumptions. Unfortunately, optimization
requires different (m,n) pairs as a function of signal length. Thus, while Page’s test remains the
most desirable detector to minimize D̄ or if the signal length is unknown, the gains in Pd achievable
by a properly designed sliding m-of-n detector make it the best choice for finite-duration signals of
known length.
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1 Introduction

Several detection problems in sonar signal and information processing can be characterized as
detecting the onset of a signal as quickly as possible. A detection example is found in detecting
the presence of an active sonar contact over multiple pings as it enters within the sonar’s detection
range. Tracking algorithms provide examples both in track initialization, which occurs when energy
is first observed consistently along paths representative of constant-velocity target motion, and also
when tracks are ended. Page’s test [1] is the most common choice for the quickest detection of signal
onset, owing to its ease of implementation and optimality in providing the minimum average delay
to detection (D̄) for a constrained average time between false alarms (T̄ ). A common alternative,
however, is the sliding m-of-n detector [2, 3] which declares a detection when m of the previous
n trials are successes (e.g., a signal observed on 3 of the 5 most recent pings). Noting that the
optimality of Page’s test does not extend to the probability of detecting a finite duration signal, it
is possible that the sliding m-of-n detector is a desirable alternative.

The intuitiveness of the m-of-n detection criteria makes it popular, despite the limited availability
of performance assessment techniques when it is applied sequentially to detect the onset of a signal.
The m-of-n detector is most often analyzed as it is applied in data fusion [4, Sect. 3.4]; that is, in the
context of m successes within a single sample of n trials. When sliding the m-of-n detector along
a data sequence, it can be described as a finite-state Markov process (FSMP) [2, 3]. Williams [3]
developed an algorithm to compute the probability of detection when the input data had a time-
varying single-trial probability of success. Bar-Shalom [2, Sect. 3.3] presents results for small values
of m and n. Unfortunately, the FSMP characterization encounters computational limitations as n
increases. The sliding m-of-n detector can also be described as a scan statistic [5]. Approximations
for the average stopping time of the test can be found in [5, Sect. 4.2]; however, they assume a
minimum decision time of n samples and are therefore most appropriate for use under false alarm
conditions. The focus of this report is on techniques for evaluating performance measures for the
sliding m-of-n detector, designing the detector to meet a false-alarm rate (FAR) specification and
minimize D̄ or maximize the probability of detection (Pd) of a finite-duration signal, and to compare
the performance of the sliding m-of-n detector to that of Page’s test.

The m-of-n detector operates on binary data which are typically obtained through an interme-
diate thresholding process. In Sect. 2, the quickest detection performance measures and their
approximations for Page’s test are reviewed and applied to exponentially-distributed data and the
Bernoulli-distributed binary data they produce upon thresholding. Analysis of the quickest de-
tection receiver operating characteristic (ROC) curves illustrates the performance lost from using
thresholded data rather than pre-thresholded data. Approximations are presented for the data
threshold maximizing the asymptotic efficiency of Page’s test for several common signal and noise
scenarios.
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In Sect. 3, the standard quickest detection performance measures (D̄ and T̄ ) are derived for the
sliding m-of-n detector using Williams’ FSMP description and stationary data statistics. Unfor-
tunately, the number of states in the FSMP characterization of the sliding m-of-n detector grows
exponentially with n, which makes analysis difficult for n > 10. Approximations are therefore
developed that are applicable to T̄ and D̄, amenable to evaluation for much larger values of n than
the FSMP exact solutions, and used to optimally choose the (m,n) pair meeting a FAR specifica-
tion and minimizing D̄. A technique is also presented to choose the (m,n) pair meeting the FAR
specification and approximately maximizing the probability of detection (Pd) of a finite-duration
signal using an easily evaluated lower bound on Pd for the m-of-n detectors.

Finally, the performance of Page’s test and the sliding m-of-n detector is compared in Sect. 4 in
terms of average delay to detection and probability of detection. Conclusions are presented in Sect.
5 and Matlab code for some of the m-of-n subroutines is found in Appendix B.

2 Quickest detection and Page’s test

Let the input data be the sequence of independent samples

. . . Xk−1, Xk, Xk+1, . . . (1)

where for k < k0 the data follow probability density function (PDF) f0(x) and PDF f1(x) for
k ≥ k0. The time of the change or signal onset, k0, is unknown. The quickest detection problem
is to declare that the change has occurred using the fewest number of samples beyond k0. Page’s
test [1] is one of the most common detection algorithms for the quickest detection of the onset of
a signal. Its detection statistic is obtained through the simple update

Yk = max {0, Yk−1 + g (Xk)} (2)

with the initial value taking on Y0 = 0. When the function g(x) is the log-likelihood ratio (LLR),

g(x) = log

[
f1(x)

f0(x)

]
, (3)

no other detection algorithm provides a smaller average delay before detection while simultaneously
meeting a constraint on the average time between false alarms [6, 7].

For the purposes of comparing Page’s test with a sliding m-of-n detector, performance measures
for quickest detection are reviewed and evaluated for Page’s test. An exponentially-distributed
data example is used to produce the Bernoulli-distributed (i.e., binary) data on which the m-of-n
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detector operates. The binary, decision-level, data are produced by the exponentially-distributed
data through an intermediate thresholding process (e.g., as in de-centralized detection where only
local decisions are transmitted to a fusion agent).

2.1 Performance measures

While the probability of detection (Pd) and probability of false alarm (Pfa) are the standard
performance measures for hypothesis testing with fixed sample sizes, the quickest detection problem
requires different measures. Under the null hypothesis, the average time between false alarms (T̄ )
is used to represent how false-alarm prone a detector is while the average delay to detection (D̄)
quantifies detection performance under the alternative hypothesis of signal presence. T̄ and D̄ are
sometimes called the average stopping times (ASTs), average sample numbers (ASNs) or average
record lengths (ARLs). In terms of performance measures of interest to sonar signal processing,
T̄ is the inverse of the false alarm rate while D̄ is detection latency. These measures suffice when
the duration of the signal is infinite once it starts (e.g., as in machinery failure) or at least much
longer than D̄. However, they can be supplemented with Pd when the signal is ephemeral; see [8]
for several techniques to evaluate the probability of detecting finite-duration signals using Page’s
test.

The detector data mapping function g(x) is often not the LLR which requires some knowledge
about the signal (e.g., its strength). When the LLR is used, it satisfies the inequalities

E0 [g(X)] < 0 < E1 [g(X)] (4)

where E0[·] and E1[·] represent taking the expectation over, respectively, the null and alternative
hypotheses. Thus, when no signal is present Page’s test is often reset to zero, but then tends to rise
when signal is present. When g(x) is not the LLR, good performance, as defined by an exponential
relationship between the threshold h (to which Yk is compared in declaring a detection) and T̄ and
a linear relationship between h and D̄, requires the inequalities in (4) be satisfied. When they are,
approximations to the ASNs are [9, Ch. 5]

T̄ ≈ 1 + ht0 − eht0

t0E0 [g(X)]
(5)

and

D̄ ≈ 1 + ht1 − eht1

t1E1 [g(X)]
(6)

where t0 and t1 are the non-zero unity roots of the moment generating function (MGF) of g(X).
That is, ti 6= 0 such that

Ei

[
etig(X)

]
= 1 (7)
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for i = 0 and 1.

In most practical situations, T̄ will be large, which will require a large threshold h. In this regime,
and under the conditions described in (4), the asymptotic efficiency (η) of Page’s test [10] describes
the log-linear relationship between T̄ and D̄,

η = lim
h→∞

log T̄

D̄
(8)

= t0E1 [g(X)] . (9)

2.2 Exponentially- and Bernoulli-distributed data examples

The primary focus of this paper is on quickest detection of Bernoulli-distributed data. However,
it is important to recall the inherent loss in performance incurred by working with such a harsh
quantization. To illustrate the loss in performance, an exponentially-distributed-data example is
used to derive the Bernoulli-distributed data through the standard thresholding process. In order
to evaluate performance, the data mapping function g(x) must be derived along with the MGF
unity roots and means under the null and alternative hypotheses. While g(x) and its mean values
are evaluated here, the procedure for obtaining the MGF unity roots is described in Appendix A.

2.2.1 Exponentially-distributed data

Suppose the data follow an exponential distribution with mean λ under the null hypothesis and
mean λ(1 + s) under the alternative. Thus, λ is the average noise power and s is the signal-to-noise
power ratio (SNR). The LLR is

l(x) =
s

1 + s

[
x

λ
−
(

1 +
1

s

)
log (1 + s)

]
(10)

and clearly depends on both s and λ. In this paper λ is assumed to be known, although it is
typically estimated in a normalization procedure. The detector is implemented with a design SNR,
s̃, which will most likely differ from the observed SNR s. The optimality of the LLR in Page’s test
is not altered by a change in scale, so the data mapping function

g(x) =
x

λ
− b (s̃) (11)

is used where the bias

b (s̃) =

(
1 +

1

s̃

)
log (1 + s̃) (12)
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only depends on the design SNR.

The mean of the data mapping function is

E0 [g(X)] = 1− b (s̃) (13)

under the null hypothesis and
E1 [g(X)] = 1 + s− b (s̃) (14)

under the alternative hypothesis.

2.2.2 Bernoulli-distributed data

If the exponentially-distributed data, normalized by the noise power, are compared with a threshold
(hx) prior to application to Page’s test, the binary data sequence can be described as

Ui = I

(
Xi

λ
≥ hx

)
(15)

where I(·) is an indicator function returning one when the argument is true and zero otherwise.
The datum Ui is a Bernoulli random variable with probability

p0 = Pr

{
Xi

λ
≥ hx |H0

}
= e−hx (16)

under the null hypothesis (H0) and

p1 = Pr

{
Xi

λ
≥ hx |H1

}
= e−

hx
1+s = p

1
1+s

0 (17)

under the alternative hypothesis (H1). Note that these are the well known false-alarm and detection
probabilities for envelope detection of a Gaussian target in Gaussian noise.

Scaling the LLR of the Bernoulli data to isolate the dependence on p0 and p1 into the bias results
in the data mapping function

g(u) = u− b (p0, p1) (18)

where the bias is

b (p0, p1) =

[
1 +

log (p1/p0)

log [(1− p0) / (1− p1)]

]−1
. (19)

UNCLASSIFIED

approved for public release

5



CausaSci LLC UNCLASSIFIED 2011-01

If the detection process producing the Bernoulli data is unbiased, then p1 > p0 and b (p0, p1) ∈ (0, 1).
While it is reasonable to expect p0 to be known, it is unlikely that p1 will be known with any
accuracy. As was done for the exponentially-distributed data, design probabilities p̃0 and p̃1 can
be used to form the bias

b̃ = b (p̃0, p̃1) (20)

or b̃ may be chosen in (0, 1).

The mean value of the data mapping function is

E0 [g(U)] = p0 − b̃ (21)

under the null hypothesis and
E1 [g(U)] = p1 − b̃ (22)

under the alternative hypothesis.

2.2.3 Performance comparison

The receiver operating characteristic (ROC) curves for Page’s test operating on the exponentially-
and Bernoulli-distributed data are compared in Fig. 1 for the case of p0 = 10−4 and p1 = 0.5,
which equates to s ≈ 10.9 dB for the exponentially-distributed data model. The solid lines in the
figure are D̄ as a function of log10 T̄ when the bias is chosen correctly according to s or p1. The
asymptotic efficiencies (as computed via (9)) for these cases are

ηB = 3.9 and ηE = 9.7 (23)

for the Bernoulli- and exponentially-distributed data, respectively. Their ratio ηE/ηB = 2.5 is
representative of the factor by which D̄ for the exponentially-distributed data is below that for the
Bernoulli-distributed data; that is, the signal is detected approximately 2.5 times faster using the
original data compared to using the quantized, binary data.

The dashed lines in Fig. 1 represent the performance when the bias in the data mapping function
is chosen incorrectly. For the exponential data, the bias was chosen assuming an SNR of 15, 5, 2,
and 0 dB, with performance increasingly worse in this order. Although not always the case, this
illustrates that overestimating the SNR is often not as bad as overestimating it. The dashed curves
for the Bernoulli data are formed with a design p̃1 formed from the design SNR according to

p̃1 = p
1

1+s̃

0 (24)

and illustrate similar performance degradation relative to the correctly chosen bias, which optimizes
performance.
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Figure 1: ROC curves for Page’s test operating on exponential and Bernoulli data with correct bias
(solid lines) and a mismatched bias (dashed lines). The advantage of working with data prior to
quantization is evident in the lower values of D̄ for the exponential data.
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2.3 Optimal quantization

When the pre-thresholded data are accessible or the quantization process is included in the detector
design, the quantization threshold hx can be chosen to maximize the asymptotic efficiency of Page’s
test formed from the binary data of (15). When the FAR specification results in a high threshold
in Page’s test, then optimizing η will also minimize D̄ for a given T̄ .

Using the definition of η in (9), the optimal bias from (19), and the approximation for t0 for
Bernoulli-distributed data found in Appendix A,

t0 ≈
− log (p0)

1− b̃
, (25)

yields the approximation

η ≈ −p1 log (p0) +
(1− p1) log

(
1−p0
1−p1

)
log(p1)
log(p0)

− 1
. (26)

For the fluctuating signal described in Sect. 2.2.1, the first term in (26) dominates the second,
especially as SNR increases (where p1 → 1). Using (16) and (17) for p0 and p1, the first term in
(26) is seen to be maximized when

hx = s+ 1. (27)

Starting with this threshold and implementing one step of a Newton-Raphson update to find the
maximum of (26) results in the refined approximation to the optimal threshold (in dB),

H∗x = 10 log10 h
∗
x ≈ 10 log10(s+ 1) + 10 log10

1 +

(
1 +

s− (e− 1)−1

1 + log (1− 1/e)

)−1 (28)

where e = e1 ≈ 2.7183.

The approximation of (28) is compared in Fig. 2 with the optimum threshold for the fluctuating
signal as obtained through a numerical search using (9). As seen in the figure, the approximation
is quite good, especially for larger values of SNR. The average absolute error is only 0.026 dB for
SNR ranging from 2 to 16 dB. Although the maximum error is more than one-tenth of a dB, it
occurs for the smallest SNR. Three other common signal and noise scenarios are also considered: a
non-fluctuating signal in complex Gaussian noise, a Gaussian shift-in-mean signal, and a Gaussian
change-in-variance signal. The statistical characterizations of the detection statistic under the null
and alternative hypotheses along with equations for p0 and p1 for the various scenarios considered
are found in Table 1.
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Table 1: Data statistical characterizations under the null and alternative hypotheses and the asso-
ciated success probabilities for various signal and noise scenarios as a function of the data threshold
hx and SNR. An exponential distribution with mean λ is denoted by E(λ), a non-central chi-squared
distribution with two degrees of freedom and non-centrality parameter δ by χ2

2(δ), and a Gaussian
distribution with mean µ and variance σ2 by N (µ, σ2). The cumulative distribution functions
(CDFs) of the non-central chi-squared and Gaussian distributions are, respectively, Fχ2

2
(x; δ) and

Φ ((x− µ)/σ).

Signal type H0 p0 H1 p1

Fluctuating X ∼ E(1) e−hx X ∼ E(1 + s) e−hx/(1+s)

Non-fluctuating X ∼ E(1) e−hx 2X ∼ χ2
2(2s) 1− Fχ2

2
(2hx; 2s)

Gaussian shift-in-mean X ∼ N (0, 1) 1− Φ (hx) X ∼ N (
√
s, 1) 1− Φ (hx −

√
s)

Gaussian change-in-variance X ∼ N (0, 1) 1− Φ (hx) X ∼ N (0, 1 + s) 1− Φ
(
hx/
√

1 + s
)

The complicated forms of the threshold/exceedance-probability relationships for these latter signal
types hinders derivation of an approximation similar to (28). However, noting the smooth functional
forms of the optimal threshold seen in Fig. 2 on logarithmic scales, the functions were fit via least-
squared-error optimization using half-powers of SdB = 10 log10 s (i.e.,

√
SdB, SdB, and S1.5

dB). The
functional forms of the approximations to the optimal threshold are shown in Table 2 for each
signal and noise scenario along with the average, median and maximum errors over the range of
SNR evaluated. A least-squared-error fit to the optimal threshold for the fluctuating signal (not
shown in Fig. 2) provided a better overall fit than (28) at the expense of an increase in error for
large SNR. While the Gaussian signals only required two terms to keep the maximum absolute
error less than one-twentieth of a decibel over the range of SNR evaluated, the fluctuating and
non-fluctuating signals required four terms. As seen in Fig. 2, the fit is quite good within the range
of evaluation. Other than (28), these functions are not expected to work beyond SdB ∈ [2, 16].

The general trend for the optimal threshold is one that increases with SNR, indicating that η is
maximized primarily by reducing p0, although p1 was also slightly increasing with SNR. The errors
in the approximations found in Table 2 are small enough that they can be used to design the
intermediate thresholding when it is desired to apply Page’s test to the binary, decision-level data.
As will be seen in the following section, this is likely a good choice when an m-of-n detector is used
instead of Page’s test.
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Figure 2: Data threshold (hx) optimizing the asymptotic efficiency of Page’s test for various signal
and noise scenarios (solid lines). The general trend observed is for an increasing threshold with
SNR. Approximations to the optimal threshold are shown as dashed lines or ‘+’ marks.
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3 Sliding m-of-n detectors

A common technique for fusing information is to apply an m-of-n rule where a detection declaration
is made whenever m successes occur within n associated trials. The situation is common in dis-
tributed detection [4, Sect. 3.4] and known as binary integration in the radar community [11, Sect.
6.4] owing to its equivalence to thresholding a rolling sum of binary data representing the individual
trials. Analysis of the m-of-n detector is usually limited to the static case where only one set of
n inputs is evaluated. Sliding an m-of-n detector along a data sequence, which is often how it is
used to reduce false alarms, results in what is known in the statistics literature as a scan statis-
tic [5]. It can also be described as a discrete-time, finite-state Markov process (FSMP) [2,3]. In [3]
a technique was presented for numerically evaluating the probability of detection for an input se-
quence of Bernoulli random variables with time-varying probabilities—the example considered in [3]
was an active sonar contact transiting through an area presenting a limited detection opportunity.
BarShalom [2, Sect. 3.3] presents results for small values of m and n.

In this section, the quickest-detection performance measures (D̄ and T̄ ) are developed along with
a more simply evaluated alternative to Williams’ algorithm for Pd and a lower bound on Pd for the
stationary-data case in preparation for comparing the performance of the sliding m-of-n detector
with Page’s test. While the characterization of the sliding m-of-n detector as an FSMP allows
for exact evaluation of the average stopping times and Pd, it is limited by exponential growth in
the number of states as n increases. Approximations to the average stopping time of the scan
statistic [5, Sect. 4.2] surmount this limitation, but assume a minimum decision time of n rather
than m and have numerical evaluation issues for small p. To surmount this limitation, a small-p
approximation to T̄ is presented along with an alternative computational method approximating
the average stopping times that is useful for a much wider range of n. Finally, techniques are
presented for choosing m and n to meet a false alarm specification and to approximately maximize
the probability of detecting a finite duration signal and minimizing the average delay to detection.

3.1 m-of-n detection as a finite-state Markov process

The key to Williams’ analysis in [3] was to describe the m-of-n detector as an FSMP with the
states defined by the previous n − 1 trials, what he termed the detector’s history. The detection
event, observing m successes in n consecutive trials, was characterized by an ‘accepting’ state while
all other states were defined as non-accepting. The complete set of states was enumerated by the
integer value of the binary number defined by the history. Consider, for example, m = 3 and
n = 5. If the previous 4 trials were the sequence failure, success, success, failure then the history
is the binary number 0110 with a state enumeration of the integer 6. If the next trial is a success,
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then this state transitions to the accepting state having observed 3 success in 5 consecutive trials.
However, a failure in the next trial would transition to state 1100 (integer value 12). A technique
for obtaining an equivalent FSMP with a reduced set of states was also presented in [3], enabling
a more efficient numerical analysis for larger values of n. Matlab code for creating the structures
defining the Markov process is presented in Appendix B.

The Markovian nature of the process implies that the vector p(k) of probabilities of being in each
of the states at time k can be determined from the probabilities at time k−1 according to [12, Sect.
4.3]

pT (k) = pT (k − 1)P (k) (29)

where P (k) is the (potentially) time-varying state transition matrix and the superscript T represents
the transpose operation. Williams presented in [3] an algorithmic update accomplishing (29);
however, the matrix representation is maintained here owing to its simpler implementation and
the corresponding ability to evaluate D̄ and T̄ with a simple summation over the FSMP states for
stationary data.

Suppose there are ns states, including the accepting or absorbing state. In ordering the states within
p(k), let the first state be a history comprising all zeros (i.e., none of the past n − 1 trials were
successful) and let the last state be the accepting state (i.e., the m-of-n success state). Assuming
that once the accepting state is entered, the process remains there, the state transition matrix can
be described by the decomposition

P (k) =

[
P cc(k) pcs(k)

0T 1

]
(30)

where P cc(k) is the transition matrix for the ns − 1 continuing states, pcs(k) is a vector of the
transition probabilities from the continuing states to the accepting state, and 0 is a vector of zeros.

The probability of being in one of the continuing states in the kth trial can then be described by
the recursion

pTc (k) = pTc (k − 1)P cc(k) (31)

where pc(0) is a vector of the initial probabilities of being in a continuing state.

The performance of the sliding m-of-n detector is described by defining the probability mass func-
tion (PMF) of the stopping time K, which is defined as the first time the process enters the
accepting state. The PMF for K is the probability of transitioning to the accepting state at time
k from one of the continuing states at time k − 1,

fK(k) = pTc (k − 1)pcs(k) (32)
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for k = 1, 2, . . . .

The probability of detecting a signal within k trials using a sliding m-of-n processor is the CDF of
K,

Pd(k) = FK(k) =

k∑
l=1

fK(l). (33)

This also approximates the probability of detecting a finite-duration signal of length k, only ignoring
any detections occurring after time k but before time k + n (i.e., while the sliding window is still
affected by the signal). For Page’s test, these were termed latent detections [8].

The average sample numbers (T̄ and D̄) are the mean of K under the null and alternative hypothe-
ses, respectively. These are typically evaluated when the process is stationary (i.e., pk is constant)
and therefore discussed after the simplifications of the following section.

The time-varying part of the transition matrix and vector is limited to the success probability of
the kth trial. Defining this as pk, the continuing state transition matrix can be described as

P cc(k) = pkJ+ + (1− pk)J− (34)

where J+ and J− are indicator matrices (the elements containing either a zero or a one) representing
which state is achieved at the next time step given a success (J+) or a failure (J−). Similarly, the
probability of transitioning from the continuing to accepting states can be described by

pcs(k) = pkj+ (35)

where j+ is an indicator vector. Using (34) and (35) in (31) and (32) is more efficient in Matlab than
the algorithm developed in [3]. Matlab code for producing the indicator matrices from Williams’
Markov-process structure definition is found in Appendix B.

3.2 State and stopping time probabilities for stationary data

When the state transition probabilities do not change with time, simplifications allow further
analysis of the m-of-n processor. Dropping the dependence on k of P cc, pcs, and p, the update
equation (31) for the continuing state probabilities becomes

pTc (k) = pTc (0)P k
cc (36)

= pTc (0)V ΛkV −1

where V and Λ are the eigenvector and eigenvalue matrices of P cc. Noting that Λ is diagonal
illustrates the ease with which the state probabilities may be calculated.
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Similarly, the PMF for K is simplified to

fK(k) = pTc (0)P k−1
cc pcs

= pTc (0)V Λk−1V −1pcs

=

ns−1∑
i=1

aibiλ
k−1
i (37)

where λi are the eigenvalues of P cc (i.e., the diagonal elements of Λ) and ai and bi are elements of
the vectors

a = V Tpc(0) (38)

and
b = V −1pcs. (39)

The CDF of K (yielding Pd(k)) can also be evaluated without resorting to the cumulative summa-
tion of (33),

FK(k) =

k∑
l=1

fK(l)

=

ns−1∑
i=1

aibi

k∑
l=1

λl−1i

=

ns−1∑
i=1

aibi

(
1− λki

)
(1− λi)

. (40)

Note that the PMF of the stopping time for times k = m,. . . , n is simply the probability of
observing m− 1 successes in k − 1 trials followed by a success,

fK(k) =

(
k − 1

m− 1

)
pm(1− p)k−m

(41)

where ‘i choose j’, (
i

j

)
=

i!

j!(i− j)!
=

Γ(i+ 1)

Γ(j + 1)Γ(i− j + 1)
, (42)

is the number of different combinations of size j from a population of size i.
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The CDF of the stopping time is simply the summation

FK(k) =

k∑
j=m

(
j − 1

m− 1

)
pm(1− p)j−m (43)

and provides an easily evaluated alternative to the FSMP result of (40) that is extremely useful
when n is large.

The initial state probability vector for the continuing states (pc(0)) should be chosen assuming
the sliding m-of-n detector has been operating for some time under the null hypothesis, but not
resulted in a false alarm. Following [8], the update equation for the continuing state probabilities
given no false alarms is

pTc|c(k) =
pTc|c(k − 1)P cc

pTc|c(k − 1)P cc1
(44)

where 1 is a vector of ones. Using the eigen-decomposition of (36), it is straightforward to show
that the limiting continuing state probability vector is the left eigenvector of P cc associated with
its largest eigenvalue

pTc|c(∞) = lim
k→∞

pTc|c(k)

=
eT1 V

−1

eT1 V
−11

(45)

where e1 is a unit vector pointing in the direction of the first element and it is assumed that the
largest eigenvalue is in the first position.

For small values of p, an accurate approximation can be obtained from the probability of observing
the number of successes in the history of each continuing state. Defining β(i) as the number of
successes in the length n − 1 history of the ith state, the asymptotic probability of observing the
ith continuing state is approximately

pc|c(∞) ≈ 1∑ns−1
j=1 pβ(j)

[
pβ(1) pβ(2) · · · pβ(ns−1)

]T
. (46)

For values of n ≤ 10, the approximation of (46) is quite good when p < 0.1. Define the error as
the maximum over all values of m for a given n of the sum of the total absolute error between the
FSMP exact solution of (45) and the approximation of (46). The error was worst for small values
of m > 1 and larger values of n, and ranged from p2 for the smaller values of n to p for the larger
values. Noting that the first state (i = 1) is the only state with no successes in the history (i.e.,
β(1) = 0), most of the weight is placed on this state when p is small. Therefore, using

pc|c(∞) ≈ e1 (47)

is a reasonable approximation when p is sufficiently small.
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3.3 Average stopping time

Under the stationary conditions described in the previous section, the average stopping time of the
sliding m-of-n detector is

E[K] =

∞∑
k=1

kfK(k) (48)

=

ns−1∑
i=1

aibi

∞∑
k=1

kλk−1i

=

ns−1∑
i=1

aibi

(1− λi)2
(49)

= pTc (0) (I − P cc)
−2 pcs. (50)

The average time between false alarms (T̄ ) is obtained by using p0 in forming the state transition
probabilities, while D̄ requires use of p1.

When m = 1, the stopping time of the sliding m-of-n detector is simply the time of the first success
on an individual trial, which is a geometric random variable. The PMF of the stopping time,
regardless of the value of n, is then

fK(k) = p (1− p)k−1 (51)

with the associated CDF
FK(k) = 1− (1− p)k (52)

for k = 1, . . . . The average stopping time is

E[K] =
1

p
(53)

and standard deviation

Std[K] =

√
1− p
p

. (54)

3.3.1 Small-p approximation

When the probability of success on an individual trial is sufficiently small, the sliding m-of-n
detector can be approximated as a sequence of independent Bernoulli trials where the success
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probability is the probability of observing a failure, followed by m− 1 successes in the next n− 1
trials, followed by one success,

p̃ ≈ (1− p) ·
[(

n− 1

m− 1

)
pm−1(1− p)n−m

]
· p

=
(n− 1)! pm(1− p)n−m+1

(m− 1)!(n−m)!
. (55)

Note that (55) is slightly more accurate than using the probability of observing m successes in
n trials, which does not require a success on the final trial or a failure in the trial immediately
preceding the set of n trials leading to a detection. Similar to the m = 1 case, the stopping time is
then approximately a geometric random variable with statistics characterized by (51)–(54) using p̃
from (55) in place of p. The average stopping time is approximated as

E[K] ≈ (m− 1)!(n−m)!

(n− 1)! pm(1− p)n−m+1
, (56)

which is significantly easier to evaluate and less prone to computational errors than the exact FSMP
solution of (50). Support for the geometric-distribution assumption comes from the form of the
stopping time PMF seen in (37), which is the weighted sum of the eigenvalues of P cc raised to the
power k− 1. As k increases, the PMF increasingly becomes dominated by the contributions of the
maximum eigenvalue,

fK(k) ≈ a1b1λk−11 (57)

where it is assumed that λ1 is the largest eigenvalue. When p is small, the largest eigenvalue of
P cc is significantly larger than the next largest one, additionally contributing to the accuracy of
this approximation as seen in the following analysis.

The small-p approximation of (56) is compared with the FSMP exact solution of (50) in Figs. 3
and 4 for n = 7 and all possible values of m. Note that the exact result of (53) as a function of p
is shown for m = 1. The FSMP exact solution is shown as asterisks and encounters computational
errors when p is too small. The approximations from [5] had numerical evaluation issues in the
same places as the FSMP exact solution and converge to n as o → 1 rather than m. Figure 4
expands the region p ∈ [0.01, 1] where the poor fit of the small-p approximation as p increases is
revealed. Defining the relative error as

εR =

∣∣K̄ − K̄a

∣∣
K̄

(58)

where K̄ is the average stopping time from (50) and K̄a is the small-p approximation of (56), the
latter (dashed lines in Figs. 3 and 4) is quite accurate for p less than about 0.1 for n = 7 with εR
below 0.1 (10% error) and decreasing proportionately with p (i.e., 1% error for p < 10−2). Note
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that the average stopping time is shown on a logarithmic scale in the figures. The relative error
observed or calculated on a logarithmic scale is less than that computed via (58) and reported
herein. Although not shown, the regions for which the relative error is below 10% for n = 3 are
p < 0.25, p < 0.18 for n = 5, and p < 0.06 for n = 10. This is representative of a constant np
effect where for larger n the approximation requires p to be commensurately smaller for accuracy.
The limited results presented here indicate the small-p approximation has maximum errors around
10% when np ≤ 0.7 or 1% errors when np ≤ 0.07. As can be seen in Fig. 4, the errors are worst
for m = 2 and decrease in severity as m increases (e.g., the error is less than 10% for p < 0.7 when
m = n = 7).

3.3.2 Lower bound

Recall the stopping time PMF from (41) for times k ≤ n. If the average stopping time is significantly
less than n, then (41) might yield an accurate approximation. More specifically, by letting n→∞,
the stopping time PMF of (41) represents a lower-bound on the stopping time. That is, the test
stopping after the first m successes will stop as soon or sooner than the test stopping the first time
m successes are observed in n consecutive trials. Using (41) in (48), the lower bound is seen to be

E[K] ≥
∞∑
k=m

k

(
k − 1

m− 1

)
pm(1− p)k−m

= mpm
∞∑
j=0

Γ(j +m+ 1)

Γ(m+ 1)

(1− p)j

j!
(59)

=
m

p
(60)

where the infinite summation in (59) is recognized as a hypergeometric function simplifying to
p−(m+1) [13, Table 18-1].

The bound is compared with the exact FSMP solution in Fig. 5. As might be expected, the bound
is tightest for m� n and as p→ 1, but otherwise a very loose bound. While it is better than the
small-p approximation near p = 1, its primary utility is as a lower bound rather than an accurate
approximation to the average stopping time.

UNCLASSIFIED

approved for public release

19



CausaSci LLC UNCLASSIFIED 2011-01

Figure 3: Comparison of the FSMP exact solution to the average stopping time to small-p and
alternative computational approximations for n = 7 and all possible values of m. The FSMP
exact solution encounters numerical issues when p is small enough while the small-p approximation
degrades as p increases.

UNCLASSIFIED

approved for public release

20



CausaSci LLC UNCLASSIFIED 2011-01

Figure 4: Expanded view of Fig. 3 in the region p ∈ [0.01, 1] illustrating the failure of the small-p
approximation and the accuracy of the alternative computational approximation as p increases.
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Figure 5: Average stopping time as a function of p for n = 10 comparing the exact solution, the
alternative computational approximation, and the lower bound for various values of m.
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3.3.3 Alternative computational approximation

As seen in Fig. 3, the FSMP exact solution of (50) encounters numerical issues when p is small. It
can also be computationally intensive when n is large owing to the substantial number of states,
which for m near n/2 grows exponentially with n. For example, there are up to 253 states when
n = 10, up to 6,436 when n = 15 and 184,757 when n = 20. The approximations from the scan-
statistics literature [5] similarly have problems for small values of p and then are derived to converge
on n rather than m as p → 1, so are primarily useful for evaluating T̄ when p is not too small.
An alternative computational method approximating the average stopping time is presented in this
section avoiding the numerical issues of the scan-statistic approximations and the FSMP exact
solution both in defining the states and evaluating E[K]. Extensive evaluation of (50) revealed
that the average stopping time could be described approximately as

Ep[K] ≈ m

p
e(m−1)G(p,c(m,n)) (61)

where the function

G(p, c) =

∫ − log p

0

(
1− e−u

)c
du (62)

and c(m,n) is a term that requires numerical evaluation. Noting that G(1, c) = 0, it can be seen
that the average stopping time in (61) tends to m as p → 1. It was also observed that c(m,n)
increases with n, but decreases with m, and that c(2, n) ≈ n− 1 for large n. While there does not
appear to be any simple closed-form solutions to the integral in (62), the argument

gc(u) =
(
1− e−u

)c
(63)

is suitable for numerical integration. The procedure implemented in the Matlab code found in
Appendix B exploits a second-order Taylor-series expansion of gc(u) about u0 ∈ (0,− log p)

gc(u) ≈ gc(u0) + (u− u0)g′c(u0) +
1

2
(u− u0)2g′′c (u0)

=
(
1− e−u0

)c [
1 + c

(
u− u0
eu0 − 1

)
+
c2

2

(u− u0)2(c− eu0)

(eu0 − 1)2

]
(64)

for a set of points equally spaced within the integration limits. The integral in (62) is then approx-
imated as the sum of the integrals over the piece-wise quadratic functions.

The value of c(m,n) is chosen to minimize the error between the numerical evaluation of (61) and
the small-p approximation of (56) for some sufficiently small value of p. Although the minimization
is not a computationally burdensome evaluation, c(m,n) only needs to be evaluated once for each
(m,n) pair and then stored for subsequent use in evaluating (61). The value of p at which the two
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curves are forced to intersect is chosen small enough that the small-p approximation is accurate,
p = 0.1/n. Evaluating the average stopping time in this manner forces accuracy as p→ 1 and also
for p ≤ 0.1/n, but does not guarantee accuracy in the intervening region. For example, the relative
errors for the n = 7 case shown in Figs. 3 and 4 have a maximum error of εR = 0.18 when p = 0.4
for m = 6. While an 18% error is not small, the error is often less and there is little alternative
when n is large and the FSMP exact solution is not easily computed. For n ∈ [6, 11], the errors were
generally worst for m = n−1 (excepting n = 10 for which m = 8 had the worst error) and occurred
for some p ∈ (0.3, 0.5). For n ≤ 5, the worst error was less than 10% and occurred for smaller
values of m (m = 2 for n = 4 and 5 and m = 3 for n = 3). Of the cases evaluated (n ∈ [3, 11]), the
errors increased with n.

Of the techniques available for approximating the average stopping time, the alternative compu-
tational approximation provides the best overall accuracy, but especially so for values of p > 0.1
where D̄ is typically evaluated. For evaluating T̄ when p is small, the small-p approximation should
be adequate; however, care must be taken if n is large. While the trend toward increasing errors
with n is troubling, there is little alternative for evaluating D̄ when n > 10.

3.4 Choosing an optimal m-of-n detector

The standard technique for detector design is to first set the false-alarm rate (FAR) and then
optimize for detection performance. However, the Neyman-Pearson lemma, which dictates that a
likelihood ratio yields the optimal detector under these conditions, does not apply to the sliding
m-of-n detector. Optimality will still be defined as the (m,n) pair that maximizes detection
performance while constraining FAR. Detection performance is quantified by the D̄ for signals
that start and do not stop or have very long durations and by Pd for finite-duration signals.

3.4.1 The choice of m dominates the FAR

Typically, p will be small under the null hypothesis, so using the approximation of (56) will normally
be adequate. Consider the logarithm of T̄ using (56) with p = p0,

log T̄ ≈ −m log p0 − (n−m+ 1) log (1− p0)− log

[(
n− 1

m− 1

)]
. (65)

If p0 is small enough, the first term dominates the second. Then, by noting that the last term is
negative, a lower bound can be constructed for the values of m meeting the FAR specification

m ≥ m0 =

⌈
log T̄

− log p0

⌉
=

⌈
log10 T̄

− log10 p0

⌉
(66)
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where d·e is the ceiling function. For a fixed value of m, and assuming p0 is small enough that
the third term in (65) dominates the second, increasing n decreases T̄ . When a signal is present,
increasing n (as long as the signal duration exceeds n) increases the opportunity of observing m
successes and therefore increases Pd. As previously argued, increasing n also reduces D̄. Thus,
the optimal value of n for a fixed m is the largest value still meeting the false-alarm specification.
Define this value as n̄(m). Noting the inequality in (66), there are multiple (m,n) pairs that will
meet the FAR specification and provide the largest Pd and smallest D̄ as a function of n for each
associated value of m. The following two sections describe how to choose the (m,n) pair optimizing
D̄ or Pd.

3.4.2 Minimizing D̄

Consider the example FAR specification of T̄ = 1020 with p0 = 10−3. The minimum value of m
satisfying the false alarm constraint is 7, easily computed from

⌈
log10(T̄ )/ log10(p0)

⌉
. As seen in

Table 3, the largest value of n meeting the FAR specification for m = 7 is n̄(7) = 8. Increasing m
results in successively larger values of the optimal n; for example, n̄(10) = 58 and n̄(14) = 292. The
larger values of n generally result in less overshoot of the FAR specification and therefore might be
expected to provide better detection performance; however, the value of p1 appears to dominate the
choice, as seen from the average delay to detection shown in Table 3. When p1 is small, (m,n) pairs
with larger values provide the best performance (e.g., when p1 = 0.3, D̄ is minimized by m = 10
and n = 58). However, as p1 approaches one, smaller values of m provide the best performance.
In this case, the optimality of the (m,n) pair with the smallest value of m satisfying the FAR
specification is evident by noting that the minimum number of samples to a decision is m.

Table 3: Pairs of (m,n) meeting the false alarm specification T̄ = 1020 for p0 = 10−3, the FAR
achieved as computed through the alternative computational approximation, and D̄ for several
values of p1. The bolded entries denote the (m,n) pair minimizing D̄(p1).

m n̄(m) log10 T̄ D̄(0.30) D̄(0.50) D̄(0.70) D̄(0.95)

7 8 20.128 1713.7 100.2 20.6 7.7
8 16 20.150 136.5 24.0 12.2 8.4
9 32 20.065 45.5 18.7 12.9 9.5
10 58 20.022 35.9 20.0 14.3 10.5
11 96 19.996 37.0 22.0 15.7 11.6
12 147 19.995 40.0 24.0 17.1 12.6
13 212 20.005 43.3 26.0 18.6 13.7
14 292 20.013 46.7 28.0 20.0 14.7

Values of m minimizing D̄ as a function of T̄ and p1, denoted as m∗, are listed in Tables 4–6 for,
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respectively, p0 = 10−2, 10−3, and 10−4. The associated value of n is simply n̄(m∗), the largest
value of n meeting the FAR specification for m∗. As seen in Tables 4–6, m∗ tends to be m0 for
smaller values of T̄ or larger values of p1. For example, with p0 = 10−3, setting T̄ ≤ 105 resulted
in choosing m0 for p1 ≥ 0.1.

Table 4: Value of m minimizing D̄ for p0 = 10−2 and various T̄ and p1.
log10 T̄ m0 m∗ for p1 =

0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

5 3 3 3 3 3 3 3 3 4 4 5
10 5 5 5 6 7 7 7 8 9 11 15
15 8 8 9 9 10 11 11 12 14 16 23
20 10 11 12 12 13 14 15 16 18 21 31
25 13 14 15 15 16 17 18 20 22 27 39

Table 5: Value of m minimizing D̄ for p0 = 10−3 and various T̄ and p1.
log10 T̄ m0 m∗ for p1 =

0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

5 2 2 2 2 2 2 2 2 2 2 2
10 4 4 4 4 4 4 4 4 5 5 6
15 5 5 5 6 6 6 7 7 7 8 10
20 7 7 7 8 8 9 9 10 10 11 13
25 9 9 10 10 10 11 11 12 13 14 16

Table 6: Value of m minimizing D̄ for p0 = 10−4 and various T̄ and p1.
log10 T̄ m0 m∗ for p1 =

0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

5 2 2 2 2 2 2 2 2 2 2 2
10 3 3 3 3 3 3 3 3 3 3 4
15 4 4 4 4 4 5 5 5 5 5 6
20 5 5 5 6 6 6 6 6 7 7 8
25 7 7 7 7 7 8 8 8 9 9 10

While the optimal value of m may be taken from the data in Tables 4–6 if the desired values of
p0, p1, and T̄ have been evaluated, computation of D̄ for each value of m ≥ m0 via (50) or (61)
(the latter when n > 10) until a minimum is found is cumbersome and needlessly time consuming.
An alternative approximate method may be found by exploiting the technique proposed in the
following section for choosing m to maximize Pd for a signal of a specific length. By assuming
the signal length is equal to the average delay to detection achieved by Page’s test operating on
Bernoulli data with no mismatch in the choice of bias, an approximate value can be obtained as
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a starting point to find m∗. The average delay to detection for Page’s test can be approximated
using the efficacy (η) from (8) and the FAR specification,

D̄P ≈
log T̄

η
. (67)

The value of m approximately maximizing Pd for a signal of length D̄P for the example of Table 3 is
shown in Fig. 6 as a red circle on the curves of D̄ against m with the optimal value of m denoted by
a triangle. For p1 = 0.3, this method yielded m∗ ≈ 9 where the optimum value was 10. There was
a similar error for p1 = 0.5, but no error for 0.7 or 0.95. The error counts over all cases considered
in Tables 4–6 are reported in Table 7 where there appears to be a skew toward underestimating m∗

by one. Noting that the initialization was always within one of the optimal value, there are clear
reductions in computational effort compared with the brute-force search when m∗ � m0. As seen
in Fig. 6, it is still important to find the optimal value of m definitively as erring toward a smaller
value can come at a significant penalty in D̄.

Table 7: Counts of occurrences of errors in the initialization approach for m∗ over all the cases
shown in Tables 4–6.

p0 m∗ −minit =
-1 0 1

10−2 2 13 35
10−3 1 31 18
10−4 0 43 7

Noting the rapid rate at which n̄(m) increases with m (e.g., see Table 3), only the technique of (61)
is amenable to extensive evaluation of D̄. However, it is also important to recall that (65) is an
approximation, requiring that p0 be small. When n̄(m) is large, the approximation can degrade to
the point where it is not accurate. In these situations, the numerical technique described by (61)
should be used to evaluate T̄ as well as D̄. For example, the column in Table 3 listing the FAR
specification is computed using the alternative computational approximation of (61) for the (m,n)
pair obtained using the small-p approximation. While the inaccuracy of the latter is small in this
case, it is still evident for m = 11 and 12 and can be worse for larger values of p0 or n. To speed up
the evaluation of n̄(m), a Newton-Raphson iteration can be applied to (65) to invert the equation
for n by writing the third term using gamma functions,

log T̄ ≈ −m log p0 − (n−m+ 1) log (1− p0)− log Γ (m) + log Γ (n−m+ 1)− log Γ (n) (68)

and noting that the derivative of log Γ(x) is the digamma function ψ(x).
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Figure 6: Average delay before detection as a function of m for p0 = 10−3, log10 T̄ = 20, and
p1 = 0.3, 0.5, 0.7, and 0.95. The optimum value of m increases as p1 decreases.
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3.4.3 Approximately maximizing Pd

Often signals persist only for a short period of time, in which case the probability of detecting the
signal is a more appropriate performance measure than the average delay to detection. Consider
the example of the previous section (recall p0 = 10−3 and log10 T̄ = 20) with an individual-trial
success probability of p1 = 0.75. As noted in Table 3, the smallest value of m meeting the FAR
specification is m0 = 7. The probability of detecting a signal of length k is shown in Fig. 7 for the
7-of-7 and 7-of-8 detectors (solid lines). The dashed curve labeled ‘7-of-k envelope’ is Pd when n
equals the signal length and represents an upper bound on the performance of all detectors with
m = 7 and n ≤ k. Similarly, the curve labeled ‘8-of-k envelope’ is an upper bound when m = 8
and n ≤ k. While Pd for m-of-n detectors where k > n must be evaluated through (40), the m-of-k
performance envelope can be obtained through (43), without encountering the numerical issues of
the FSMP approach for large n. This is exploited in developing a technique for choosing the (m,n)
pair approximately maximizing Pd.

In Fig. 7, it can be seen that the 7-of-8 detector provides the highest Pd for signals with lengths
k ≤ 9. While a 7-of-9 detector would have higher Pd when k = 9, n̄(7) = 8 (from Table 3) indicating
that the 7-of-9 detector does not meet the FAR specification. When k = 10, the 8-of-k envelope
shows that the 8-of-10 detector outperforms the 7-of-8 detector. Noting that n̄(8) = 16, the 8-of-k
detector would then maximize Pd for signals of length 10 ≤ k ≤ 16.

Notice that when the signal has length k = 7, both the 7-of-7 and 7-of-8 detectors yield the same
Pd performance; however, they have different FAR. As previously noted, increasing n when m is
fixed reduces T̄ . As such, any equality in Pd for detectors with the same value of m can be resolved
by choosing the smallest value of n; that is, the smaller of the signal length or n̄(m).

The structure of the Pd curves in Fig. 7 provides a means for approximately choosing the optimal
(m,n) pair to maximize Pd while constraining T̄ without resorting to evaluating Pd through the
FSMP solution found in (40). Divide the signal-length space (the natural numbers) into consecutive,
non-overlapping intervals L1, L2, . . . , such that within any interval a fixed value of m approximately
maximizes Pd. Call this value m∗i for the ith interval and let the associated value of n be

n∗(m, k) = min {k, n̄(m)} . (69)

The first interval is L1 = [1, k∗1] with m∗1 = m0 from (66) as the optimal value of m. The next
interval starts at k∗1 + 1 and is the point at which a larger value of m has a performance envelope
exceeding that achieved with the current value. In Fig. 7, the first interval would be L1 = [1, 9]
with m∗1 = 7 and n∗(7, k). The second starts at k∗1 +1 = 10 with m∗2 = 8 and n∗(8, k) and, although
not shown, ends at k∗2 = 17. The example is continued in Fig. 8, but with a smaller single-trial
success probability p1 = 0.4 to further illustrate the optimization process. The smaller value of p1
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Figure 7: Pd as a function of signal length for various (m,n) pairs. The figure illustrates that a
7-of-n∗(7, k) rule works best when the signal length k is less than 10 where an 8-of-n∗(8, k) rule
then works best.
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doesn’t change the first interval; however, the second interval is slightly larger at L2 = [10, 18].

Generalizing the description of the signal-length intervals, the ith interval ends at the shortest
signal length k∗i such that a larger value of m in the next region m∗i+1 > m∗i has a Pd envelope
greater than that achieved by m∗i at k∗i + 1 and where the associated value of n meets the FAR
specification (i.e., k∗i + 1 < n̄

(
m∗i+1

)
). The break-point between the ith and (i+ 1)st interval can

be described analytically as

k∗i = arg min
k

{
k : P̄d

(
m∗i+1, n

∗ (m∗i+1, k
))
> P̄d (m∗i , n

∗ (m∗i , k))
}
− 1 (70)

where the Pd envelope is (following (43)) defined as

P̄d(m, k) =

k∑
j=m

(
j − 1

m− 1

)
pm1 (1− p1)j−m (71)

for k ≥ m and zero otherwise.

The approximation comes from using the Pd envelope (which is easily computed) held constant at
n̄(m) rather than the exact Pd for cases where k > n̄(m). In the example of Fig. 7, the interval is
correctly chosen resulting in an optimal selection; however, if the 7-of-8 detector performed slightly
better at k = 10 than the 8-of-k envelope, the rule of (70) would have incorrectly opted for the
8-of-10 detector. As seen in Fig. 7, the Pd envelope has a higher rate of ascent than the exact
Pd for cases where k > n̄(m), so the sub-optimality should be limited to the interval edges. For
applications where n is always small (e.g., n ≤ 10), the exact Pd can be computed and used in
place of the Pd envelope on the right-hand-side of the inequality in (70). When n is larger, there is
no clear alternative to the proposed technique.
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Figure 8: Pd performance envelopes for m-of-n detection as a function of signal length for p0 = 10−3,
p1 = 0.4, and log10 T̄ = 20. As signal length increases, the optimal value of m increases with n the
lesser of the signal length and the largest value of n meeting the FAR specification for the given m.
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4 Detection performance comparison

The detection performance of m-of-n detectors is compared with Page’s test both in terms of D̄
and Pd for a given FAR specification. It has been proven [6, 7] that Page’s test is optimal in
terms of providing the lowest D̄ for a given T̄ , so the primary issue is how poorly the m-of-n
detectors perform in comparison. As there is no such optimality with respect to Pd, an analysis of
performance is required to determine which detector performs best in any given situation.

4.1 Average delay to detection

ROC curves similar to those found in Fig. 1 are shown in Fig. 9 comparing the average delay
before detection as a function of the average time between false alarms for the optimal (in the
sense of minimizing D̄ for a constrained T̄ ) m-of-n detector and Page’s test. The case of p0 = 10−3

is considered for various values of p1. As expected based on its optimality, Page’s test is seen to
provide lower D̄ than the best m-of-n detector for all cases considered, with an increasing disparity
in performance as p1 decreases.

Both detectors require an assumption on signal characteristics (i.e., p1) in order to choose the
optimal m-of-n rule or the bias in Page’s test. The consequence of mismatch as a function of the
assumed p1 is shown in Fig. 10 for p0 = 10−3, p1 = 0.5 and various FAR specifications. When
the design value of p1 equals the true value (0.5 in this example), the performance is optimized;
however, mismatch can or will result in a longer average delay to detection. The m-of-n detectors
resulted in zero loss in many of the cases considered, reflecting the quantization involved in the
design; that is, the same values of m and n will be optimal for a range of conditions rather than
a single point condition. Page’s test exhibited an immediate performance loss upon any level of
mismatch, but still outperformed the m-of-n detectors for the majority of cases considered. For
both detectors, the loss arising from mismatch appears exacerbated by larger values of T̄ .

From the perspective of the average delay before detection, Page’s test is clearly a more desirable
detector than the sliding m-of-n detector. It enjoys optimality providing the lowest D̄ of all tests
meeting the FAR specification, but also exhibited less overall sensitivity to mismatch compared
with the best m-of-n detector. Additionally, it is easier to implement, only requiring a simple
recursion, and to optimize. Changing the FAR specification or the signal-presence probability only
requires a change in, respectively, the detector threshold or bias. Changing either for the m-of-n
detector requires a completely new evaluation of the optimum values of m and n.
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Figure 9: ROC curves of D̄ as a function of log10 T̄ for the best m-of-n detector and Page’s test
for p0 = 10−3 and various values of p1.
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Figure 10: D̄ under a mismatch between assumed and actual values of p1 for the best m-of-n
detector and Page’s test for p0 = 10−3, various values of log10 T̄ and a true value of p1 = 0.5.
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4.2 Probability of detection

Based on the optimality of Page’s test for minimizing D̄ and the Neyman-Pearson optimality of the
likelihood ratio test for detection with fixed sample sizes, it is easy to assume that the likelihood
ratio would be at the heart of the detector optimizing Pd for a finite-duration signal in a sequential
detection setting where signal onset is unknown. Interestingly, the m-of-n detectors appear to
provide comparable or better performance than Page’s test.

As described in Sect. 3.4.3, evaluating Pd for m-of-n detectors is difficult when n is above about
10, which forces the use of the Pd envelope described by (70) with the breakpoints in (71) dictating
when to change m and n chosen from (69). The resulting function is a lower bound on Pd as a
function of signal length. In a practical sense, Pd above this lower bound can only be obtained
when the signal length is small enough to allow exact evaluation of Pd through the FSMP approach
or if simulation analysis is undertaken to approximate Pd.

For Page’s test, Pd is evaluated using the FSMP approach described in [8] applied to the binary
data and data mapping function of (18). The approach requires quantizing the Page’s test detection
statistic (Yk in (2)) and data mapping function in order to characterize Page’s test as an FSMP,
similar to what was done for the m-of-n detector in Sect. 3.1. The data mapping function of (18)
can only produce values of 1− b(p0, p1) and −b(p0, p1), so the transition matrix for the continuing
states is easily constructed. However, accuracy in the result requires a fine enough quantization for
there to be many (at least 10) steps between either value and zero. This limits the practical utility
of the method for cases where b(p0, p1) is near one or zero. In evaluating Pd for both detectors,
so called ‘latent’ detections (those occurring after the signal has stopped, but while the detection
statistic is still influenced by signal presence) are ignored.

Consider the case of p0 = 10−3 and log10 T̄ = 10 shown in Fig. 11 where Pd or its lower bound
are shown as a function of signal length for several values of p1. Generally, the m-of-n detectors
provide equivalent or better detection performance than Page’s test. Pd for Page’s test appears to
initially track the Pd envelope for the m-of-n detectors where m is chosen as the smallest number
of Page-test updates allowing a detection declaration,

mp =

⌈
h

1− b(p0, p1)

⌉
. (72)

However, it shifts to follow the Pd envelope for the next higher value of m before the breakpoint
technique described in Sect. 3.4.3 for the m-of-n detectors. As seen in Fig. 11, the m-of-n detector
can provide a significant performance improvement over Page’s test for signals with lengths in
these regions. The Pd curves for p1 = 0.5 are expanded in Fig. 12 and shown along with the 4-of-k
detector curves up to k = 10. This figure illustrates that the Pd envelope is a lower bound for

UNCLASSIFIED

approved for public release

36



CausaSci LLC UNCLASSIFIED 2011-01

performance, with the 4-of-10 detector providing better performance than the 5-of-k (which would
be chosen by the Pd envelope approach) performance when k =12 through 15. Thus, the range of
signal lengths over which the m-of-n detectors outperform Page’s test is greater than that indicated
by the Pd envelope, but not necessarily attainable if it requires evaluating Pd through the FSMP
approach.

It can be seen in Fig. 12 that if the signal has length 6, Page’s test and the 4-of-k detectors for
k = 4, . . . , 10 all provide the same Pd. As noted in Sect. 3.4.3, choosing the 4-of-4 detector results
in the best achieved FAR. This can be seen in Fig. 13 where it clearly has the highest average time
between false alarms not only for the design value of p0 = 10−3, but also if the observed value of
p0 differs from the design value. In fact, the 4-of-4 detector is robust enough to meet the FAR
specification even when the observed p0 is three times greater than the design value. As seen in
Fig. 13, the robustness decreases as n→ n̄(m), the maximum value meeting the FAR specification
for the given value of m. However, from Figs. 11 and 12, the m-of-n detectors have higher Pd than
Page’s test in this region of signal length.

The primary disadvantage of the m-of-n detectors with respect to maximizing Pd is that different
(m,n) pairs are required to optimize the performance for each signal length. The performance
results for Page’s test seen in Figs. 11–13 are obtained with just one design (i.e., bias and threshold)
for each value of p1, irrespective of the signal length. Noting the significant loss in performance seen
in Fig. 12 when n is less than the signal length, it is better to overestimate the signal length if it is
not known precisely or to use Page’s test. However, it is important to maintain the optimal value
of m; that is, overestimating to the point where m increases will result in a lower Pd while merely
increasing n such that n ≤ n̄(m) will maintain Pd and trade robustness in FAR for Pd optimality
over a broader range of signals (e.g., using the 4-of-10 detector optimizes Pd for signals of length
k ≤ 10 and just meets the FAR specification). Thus, there are clear advantages in using the m-of-n
detectors rather than Page’s test when the signal length is known.
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Figure 11: Pd as a function of signal length for Page’s test and the Pd envelope (lower bound) for
the optimal m-of-n detectors for p0 = 10−3, log10 T̄ = 10 and various values of p1.
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Figure 12: Pd as a function of signal length for Page’s test and various m-of-n detectors for p0 =
10−3, log10 T̄ = 10 and p1 = 0.5.

UNCLASSIFIED

approved for public release

39



CausaSci LLC UNCLASSIFIED 2011-01

Figure 13: FAR achieved with detectors designed for p0 = 10−3, log10 T̄ = 10 and p1 = 0.5 when
the observed value of p0 differs by up to an order of magnitude. Some of the m-of-n detectors are
robust enough to meet the FAR specification even when the observed p0 is over three times larger
than the design value.
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5 Conclusions

This report has presented analysis techniques for the sliding m-of-n detector to enable design meet-
ing a FAR specification and approximately optimizing detection performance. Exact computational
techniques were presented for evaluation of D̄, T̄ , and Pd through the FSMP description of the
sliding m-of-n detector presented in [3] under stationary data conditions. As the number of states
grows exponentially with n, these techniques become computationally cumbersome for n > 10 and
impractical shortly thereafter. Approximations from scan-statistics literature [5] may be useful for
larger values of n, but are still limited at smaller values of p and assume a minimum detection
time of n rather than m, restricting their utility to evaluation of T̄ for moderate values of p, un-
less extensions exist to accommodate this alternative stopping criteria. To counter the numerical
limitations of these approaches, approximations applicable for a much larger range of n were devel-
oped, including a small-p approximation useful for evaluating T̄ and an alternative computational
approximation for D̄.

The value of m was seen to dominate the FAR of the sliding m-of-n detector, although multiple
(m,n) pairs with m above a minimum value were found to meet the specification. Of these, a
unique pair can be chosen to either minimize D̄ or approximately maximize Pd. The latter was
done by choosing the (m,n) pair maximizing an easily evaluated lower bound on the probability of
detecting a finite-duration signal using m-of-n detectors. Given the optimal m, any value of n from
the signal length up to n̄(m) (the maximum value meeting the FAR specification) maximizes the
Pd lower bound, with the lower values having greater FAR robustness but a smaller range of signal
lengths over which they are optimal. Designing the detectors to minimize D̄ was less complicated
with the optimal value of m approximated by that optimizing Pd for a signal of length equal to
the average delay to detection achieved by Page’s test. The value of n minimizing D̄ was then the
largest one meeting the FAR specification.

While the m-of-n detectors operate on binary or decision-level data, Page’s test can be applied to
binary data or the pre-thresholded data. An example illustrated the significant loss in performance
when decision-level data are used unnecessarily. The performance comparison between Page’s test
operating on binary data and the sliding m-of-n detectors showed that the latter can come close
to the optimal performance of Page’s test with respect to the average delay to detection, but not
exceed it except under extreme mismatch. Although the sliding m-of-n detector was robust to minor
mismatch, often yielding no loss, it could result in significant loss at larger levels of mismatch. The
sliding m-of-n detectors clearly outperformed Page’s test with respect to the probability of detecting
finite-duration signals. In cases where the detection performance was similar, the sliding m-of-n
detectors exhibited significant FAR robustness to varying individual trial false-alarm probability
(p0) where Page’s test did not. Although not considered extensively in this report, design of the
threshold used to produce decision-level data should be incorporated into the optimization process.
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An initial approximation was obtained by approximately optimizing the asymptotic efficiency of
Page’s test.

The primary disadvantage of the sliding m-of-n detectors is that optimal design requires different
configurations (i.e., (m,n) pairs) that depend on the FAR specification, the individual-trial suc-
cess probabilities and signal length. With Page’s test’s optimality for minimizing D̄ and simpler
design, it remains the most desirable detector for signals of unknown or infinite length. However,
the performance improvement attained by a properly designed m-of-n detector over Page’s test
for detecting finite-duration signals was significant enough that they are the clear choice when
signal length is known or known within a range where one optimal sliding m-of-n detector can be
implemented.
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A MGF unity roots

A-1 Exponential data

Finding the unity root of the MGF is equivalent to finding the root (zero) of the logarithm of the
MGF, which is the cumulant generating function (CGF). For the exponentially distributed data
described in Sect. 2, the CGF of g(X) under the signal-present hypothesis is

Ψs(t) = −b(s̃)t− log [1− λ (1 + s) t] (73)

for t < [λ(1 + s)]−1. The CGF under the null hypothesis is simply Ψ0(t), which still depends on
the design SNR s̃. Under the null hypothesis and the condition stated in (4), E0 [g(X)] < 0, it can
be shown that t0 > 0. Similarly, t1 < 0 under the alternative hypothesis when E1 [g(X)] > 0. Note
that some values of s < s̃ may violate the condition stated in (4) yielding t1 < 0, and very poor
detection performance.

The procedure for obtaining t1 is described below; t0 may be obtained by setting s = 0 without
altering s̃. The root t1 (Ψs(t1) = 0) is easily calculated through a Newton-Raphson iteration (NRI),

t1 ← t1 −
Ψs(t1)

Ψ′s(t1)
, (74)

where the the derivative of the CGF is

Ψ′s(t) = −b(s̃) +
1

[λ(1 + s)]−1 − t
. (75)

The NRI must be initialized far enough away from the origin that it converges on the non-zero root
as opposed to the root at the origin. This is accomplished by starting beyond the minimum point
of the CGF occurring at

t∗ =
1

λ(1 + s)
− 1

b(s̃)
(76)

which sets the derivative in (75) to zero. When the root is negative, the NRI can be started at 2t∗;
however, when it is positive, it must be started between t∗ and the upper limit on the range of t
for which the MGF is defined.

A-2 Bernoulli data

The CGF of the Bernoulli data with probability p is

Ψp(t) = log
[
pet(1−b̃) + (1− p)e−tb̃

]
(77)
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and its derivative is

Ψ′p(t) =
p(1− b̃)et(1−b̃) − (1− p)b̃e−tb̃

pet(1−b̃) + (1− p)e−tb̃
. (78)

The non-zero roots are again found using a NRI as described in (74). When the root tp > 0 (i.e.,
p < b̃), the iteration can be initialized using the approximation

Ψp(tp) ≈ log
[
petp(1−b̃)

]
. (79)

Equating (79) to zero and solving results in

tp =
− log (p)

1− b̃
. (80)

Alternatively, when tp < 0 (i.e., p > b̃) the approximation

Ψp(tp) ≈ log
[
(1− p)e−tpb̃

]
(81)

yields the NRI initialization

tp =
log (1− p)

b̃
. (82)
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B Matlab code for m-of-n detector performance evaluation and
design

B-1 Subroutines to represent the sliding m-of-n detector as an FSMP

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S=mofn_setup_opt(m,n)

% S=mofn_setup_opt(m,n)

% Returns a structure S of states characterizing a sliding m-of-n detector.

% S.ns = number of states

% S.H = integer representation of the state

% S.Hp = transitioning state upon a success

% S.iHp = index of state in S.Hp

% S.Hm = transitioning state upon a failure

% S.iHm = index of state in S.Hm

% S.P = temporary storage for Williams (DSTO-TN-0132) algorithm for Pd

% Data are stored in a .mat file so only have to do this once

fname=[’mofn_struct_n’ int2str(n)];

if (exist([fname ’.mat’],’file’)==2),

load(fname)

else

% Set structures to be empty for each m on first use

for i=1:n,

Sm{i}=[];

end;

end;

% Calculate structure if not already stored

if isempty(Sm{m})==1,

disp(’---- Stand by, calculating structures ----’);

fprintf(’ m=%i n=%i ’,m,n);

% Add the accepting state

i=1;

S.ns=i;

S.P(i)=0;

S.H(i)=2^n;

S.Hp(i)=2^n;

S.Hm(i)=2^n;

% Number of non-accepting states (eq 2 in DSTO-TN-0132)

% Easier to enumerate and find number of non-accepting states

hiall=0:(2^(n-1)-1); % integer rep of each possible history

ibin=binnum(hiall); % sum of 1’s of binary rep of each state
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hna=hiall(ibin<m); % integer equivalents of non-accepting states

% Loop through all possible non-accepting-states

nnas=length(hna);

fprintf(’# states = %i \n’,nnas);

for i=1:nnas,

if (nnas>500)&&(rem(i,round(nnas/10))==1),

fprintf(’.’);

end;

% Reduce to smallest equivalent state

hna0=reduce_hexad(hna(i),m,n);

% If it hasn’t been added, then add it

if ~any(S.H==hna0),

S=addhexad_opt(S,hna0,m,n);

end;

end;

% Sort hexads by H

[~,isrt]=sort(S.H);

S.H=S.H(isrt);

S.Hp=S.Hp(isrt);

S.Hm=S.Hm(isrt);

S.P=S.P(isrt);

% Add indices for each

S.iH=1:S.ns;

for i=1:S.ns,

S.iHp(i)=find(S.Hp(i)==S.H);

S.iHm(i)=find(S.Hm(i)==S.H);

end;

% Save data to .mat file for later retrieval

Sm{m}=S;

eval([’save ’ fname ’ Sm’]);

% If structure is stored, then return it

else

S=Sm{m};

end;

[S.H’ S.Hm’ S.Hp’ S.iHm’ S.iHp’];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S=addhexad_opt(S,h,m,n)

% S=addhexad_opt(S,h,m,n)

% Function internal to mofn_setup_opt(m,n) to add a hexad to structure

%

i=S.ns+1; % Find index for this hexad

S.ns=i; % Increment number of hexads

S.P(i)=0;

S.H(i)=h; % Current hexad’s integer state represenation
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% If next trial is a failure

hm=mod(2*h,2^(n-1)); % Integer state

hm0=reduce_hexad(hm,m,n); % Reduce to smallest equivalent state

S.Hm(i)=hm0;

% If next trial is a success

% If meeting m-of-n criteria

if binnum(h)==(m-1),

S.Hp(i)=2^n; % Accepting state integer ID

% Otherwise into a continuing state

else

hp=hm+1; % Integer state

S.Hp(i)=reduce_hexad(hp,m,n); % Reduce to smallest equivalent state

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function h0=reduce_hexad(h,m,n)

% h0=reduce_hexad(h,m,n)

% Function internal to mofn_setup_opt(m,n) to reduce a state to the

% "lowest common state", which minimizes the number of unique states

% in the m-of-n FSMP

h0=h;

if binnum(h)~=(m-1),

hp=mod(2*h,2^(n-1))+1;

np=reduce_hexad(hp,m,n);

if np<h,

h0=floor(np/2);

end;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function b=binnum(i)

% b=binnum(i)

% Returns the number of 1’s in the binary

% represetnation of integer i

% binnum(2)=1

% binnum(3)=2

% binnum(4)=2

% Input i can be a vector (output is a column vector)

x=dec2bin(i(:));

[nr,nc]=size(x);

b=sum(reshape(str2num(reshape(x,nr*nc,1)),nr,nc)’)’;
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B-2 Subroutines for performance measures from FSMP

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [uK,sK,err]=mofn_stats(pv,S,P0v)

% [uK,sK]=mofn_stats(pv,S,P0v)

% Returns the mean and standard deviation of the stopping time

% for the m-of-n process defined by the structure S.

% pv = vector of Bernoulli probabilities to be evaluated

% S = structure describing m-of-n process (see mofn_setup)

% P0v = vector of initial starting probabilities

% = [1 0 ... 0]’ by default

%

% uK = average stopping time (latency) for each value in pv

% sK = standard deviation of stopping time

%

[Pcp,Pcm,pcp]=mofn_states(S);

ns=length(pcp)+1;

if nargin<3,

P0v=[1;zeros(ns-2,1)];

else

P0v=P0v(1:(ns-1));

end;

uK=zeros(size(pv));

sK=uK;

for i=1:length(pv),

% Construct continuing state trans matrix

Pcc=pv(i)*Pcp+(1-pv(i))*Pcm;

pcs=pv(i)*pcp;

% Eigen decomposition

[Vc,Dc]=eig(Pcc);

dc=diag(Dc);

% If eigenvectors are not linearly independent use pseudoinverse

if rcond(Vc)<1e-10,

cc=pinv(Vc)*pcs;

else

cc=Vc\pcs;

end;

% Check to make sure pseudoinverse worked

err1=max(abs(pcs-Vc*cc));

if err1>sqrt(eps), disp(’**** Error ****’); end;

err(i)=rcond(Vc);

% Form coefficients

c=(P0v’*Vc).’.*(cc);

% Form mean, power & standard deviation

UNCLASSIFIED

approved for public release

49



CausaSci LLC UNCLASSIFIED 2011-01

uK(i)=real(sum(c./(1-dc).^2));

pK=real(sum(c.*(1+dc)./(1-dc).^3));

sK(i)=sqrt(pK-uK(i)^2);

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function Pd=mofn_pd(pv,Lv,m,n)

% Pd=mofn_pd(pv,Lv,m,n)

% Returns Pd for set of success probabilities in pv for the time

% indexes in the vector Lv

% Output Pd is a matrix with length(pv) rows and length(Lv) columns

%

S=mofn_setup_opt(m,n);

% Don’t do this if there are too many states

if S.ns>1010,

Pd=nan*ones(size(Lv));

else

[Pcp,Pcm,pcp]=mofn_states(S);

ns=length(pcp)+1;

P0v=[1;zeros(ns-2,1)];

nL=length(Lv);

np=length(pv);

Pd=zeros(np,nL);

% Construct continuing state trans matrix

for i=1:np,

Pcc=pv(i)*Pcp+(1-pv(i))*Pcm;

pcs=pv(i)*pcp;

% Eigen decomposition

[Vc,Dc]=eig(Pcc);

dc=diag(Dc);

c=conj(Vc’*P0v).*(Vc\pcs);

Pd(i,:)=abs(sum(repmat(c./(1-dc),1,nL).*(1-repmat(dc,1,nL).^repmat(Lv(:)’,ns-1,1))));

end;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Pcp,Pcm,pcp]=mofn_states(S)

% [Pcp,Pcm,pcp]=mofn_states(S)

% Returns the indicator matrices and vector required to form the

% FSMP transition probability matrix.

ns=S.ns;

Pcp=zeros(ns-1);

Pcm=Pcp;

pcp=zeros(ns-1,1);
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for i=1:(ns-1),

if S.iHp(i)==ns,

pcp(i)=1;

else

Pcp(i,S.iHp(i))=1;

end;

Pcm(i,S.iHm(i))=1;

end;

B-3 Subroutines for performance measure approximations

function [uK,sK]=mofn_stats_asy(p,m,n)

% [uK,sK]=mofn_stats_asy(p,m,n)

% Returns the mean and standard deviation of the stopping time

% for an m-of-n process when the probability of success is small

% (i.e., pv -> zero)

%

% Primarily useful in evaluating average time between false alarms.

%

% p = Bernoulli probability of success

% m = number of successes required for stopping

% n = window over which successes are counted

% Any input can be a vector

%

% uK = average stopping time (latency) for each value in pv

% sK = standard deviation of stopping time

%

% Evaluate (n-1)-choose-(m-1) using gamma functions to allow vector inputs

if m==1,

pa=p;

else

pa=exp(gammaln(n)-gammaln(m)-gammaln(n-m+1)).*(p.^m).*((1-p).^(n-m+1));

end;

uK=1../pa;

sK=sqrt(1-pa)./pa;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [uK,sK]=mofn_stats_cfcn(p,m,n,delmin)

% [uK,sK]=mofn_stats_cfcn(p,m,n)

% Returns the mean and standard deviation of the stopping time

% for an m-of-n process when the probability of success is small

UNCLASSIFIED

approved for public release

51



CausaSci LLC UNCLASSIFIED 2011-01

% (i.e., pv -> zero)

% p = Bernoulli probability of success

% m = number of successes required for stopping

% n = window over which successes are counted

% delmin = minimum step size to evaluate integral

%

% uK = average stopping time (latency) for each value in p

% sK = standard deviation of stopping time

%

if nargin<4,

delmin=[];

end;

if m==1,

pa=exp((gammaln(n)-gammaln(m)-gammaln(n-m+1))).*((p.^m));

else

pa=(1/m)*p.*exp(-(m-1)*mofn_cfcn_int(-log(p),mofn_cfcn(m,n),delmin));

end;

uK=1../pa;

sK=sqrt(1-pa)./pa;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function c=mofn_cfcn(mv,nv)

% c=mofn_cfcn(mv,nv)

% Returns the value of c(m,n) for each element in the vectors mv & nv

% Make vectors the same size if one is a scalar

nmax=max(nv);

if (length(nv)==1)&&(length(mv)>1)

nv=nv*ones(size(mv));

elseif (length(mv)==1)&&(length(nv)>1),

mv=mv*ones(size(nv));

end;

c=zeros(size(nv));

% Load file see if data for this case is present

fname=’mofn_cfcn_data’;

if (exist([fname ’.mat’],’file’)~=2),

for i=1:nmax,

Cs{i}=[0; nan*ones(i-1,1)];

end;

else

load(fname);

end;

% Populate additional cells w/ nans up to n

nCs=length(Cs);

for i=(nCs+1):nmax,
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Cs{i}=[0; nan*ones(i-1,1)];

end;

opts=optimset(’TolX’,1e-8);

log10e=log10(exp(1));

delmin=0.01;

qnew=0;

for i=1:length(nv),

n=nv(i);

m=mv(i);

% See if data for present case exists

if ~isnan(Cs{n}(m)),

c(i)=Cs{n}(m);

else

qnew=1;

% Get best fit exponent

p0v=0.1/n;

u0v=log(p0v);

% Use asymptotic approximation as barometer

Ft=-log10e*(gammaln(n)-gammaln(m)-gammaln(n-m+1))-m*log10(p0v)-(n-m+1)*log10(1-p0v);

% Find optimal exponent

c(i)=fminbnd(@(c)((log10(m)-log10(p0v)+...

(m-1)*mofn_cfcn_int(-u0v,c,delmin)*log10e-Ft).^2),0,n-1,opts);

Cs{n}(m)=c(i);

end;

end;

% Save the data if any new ones added

if qnew,

eval([’save ’ fname ’ Cs’]);

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function F=mofn_cfcn_int(xu,c,delmin)

% F=mofn_cfcn_int(xu,c,delmin)

% Subroutine used by c=mofn_cfcn(mv,nv)

% Spacing of approximations in -log(p)

if nargin<3,

delmin=[];

end;

if ~any(delmin), delmin=0.25; end;

del=min([delmin c/2]);

% Center points for quadratic Taylor approximation

xc=(del/2):del:(max(xu)+del/2);

[fc,fp1c,fp2c]=mofn_cfcn_deriv(xc,c);

% Coefficients of quadratic Taylor approximation
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b0=(fp2c/6);

b1=0.5*(fp1c-xc.*fp2c);

b2=fc-xc.*fp1c+fp2c.*(xc.^2)/2;

% Evaluation points for integral at region edges

xim=xc-del/2;

xip=xc+del/2;

% Integral over each region

Fpm=b0.*(xip.^3-xim.^3)+b1.*(xip.^2-xim.^2)+b2.*(xip-xim);

% Find nearest point for each element of xu

F=zeros(size(xu));

for i=1:length(xu),

[~,iu]=min(abs(xip-xu(i)));

% Integral from last region edge to desired point

Fu=b0(iu)*(xu(i)^3-xip(iu)^3)+b1(iu).*(xu(i)^2-xip(iu)^2)+b2(iu).*(xu(i)-xip(iu));

% Final result

F(i)=sum(Fpm(1:iu))+Fu;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [f,fp1,fp2]=mofn_cfcn_deriv(x,c)

% [f,fp1,fp2]=mofn_cfcn_deriv(x,c)

% Function used by mofn_cfcn_int

ex=exp(x);

f=(1-exp(-x)).^c;

fp1=c*f./(ex-1);

fp2=fp1.*(c-ex)./(ex-1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [pd,k]=mofn_pd_k_less_n(p,m,n)

% [pd,k]=mofn_pd_k_less_n(p,m,n)

% Returns Pd for the case of k<=n using exact formula

% p = scalar probability of success

% k = 1:n

k=1:n;

pd=zeros(size(k));

k1=m:n;

pd(k1)=cumsum(exp(gammaln(k1)-gammaln(m)-gammaln(k1-m+1)+m*log(p)+(k1-m)*log(1-p)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function P0v=mofn_steadystate(p0f,h)

% P0v=mofn_steadystate(p0f,h)

% Returns the steady-state probabilities of each state

% given a long-term probability of succes of p0f (e.g., a

% false alarm probability) and assuming no successes.

%
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% Note that when p0f is small, P0v is approximately

% P0v ~ [1 0 ... 0]

%

if p0f>0,

P0v=p0f.^binnum(h);

P0v(end)=0; % Set accepting state probability to zero

P0v=P0v/sum(P0v); % Condition on being in non-accepting state

else

P0v=[1; zeros(length(h)-1,1)];

end;

B-4 Subroutines for m-of-n detector design

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [mv,nv,log10Tv]=mofn_far_spec(p0,log10T,nsol)

% [mv,nv,log10Tv]=mofn_far_spec(p0,log10T,nsol)

% Returns nsol pairs of (m,n) meeting the FAR spec

% and the value of log10(Tbar) achieved by the pair

icmax=20;

if nargin<3,

nsol=5;

end;

m0=ceil(log10T/-log10(p0));

log10e=log10(exp(1));

for i=1:nsol,

m=m0+i-1;

mv(i)=m;

n0=mv(i);

err=2;

icv=0;

while (err>0.6)&&(icv<icmax)&&(n0<1000),

icv=icv+1;

fa=log10e*(-gammaln(n0)+gammaln(n0-m+1)+gammaln(m)-m*log(p0)-(n0-m+1)*log(1-p0));

fpa=log10e*(-psi(n0)+psi(n0-m+1)-log(1-p0));

deln=(fa-log10T)/fpa;

n0=n0-deln;

err=abs(deln);

end;

nv(i)=floor(n0);

end;

log10Tv=log10e*(gammaln(mv)+gammaln(nv-mv+1)-gammaln(nv)-mv*log(p0)-(nv-mv+1)*log(1-p0));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function [B,pd,k]=mofn_pd_breakpoint(p0,p1,log10T,Lmax)

%[B,pd,k]=mofn_pd_breakpoint(p0,p1,log10T,Lmax)

% Returns the breakpoints for m-of-n detector design to maximize

% the lower bound on Pd formed from the m-of-k Pd envelopes

%

% p0 = noise-only success probability

% p1 = noise+signal success probability

% log10T = log10(Tbar) FAR specification

% Lmax = maximum signal length of interest

%

% B.mv = value of m in each region

% B.nv = maximum value of n meeting FAR spec for each m

% B.L0 = beginning of each region

% B.L1 = end of each region

% pd = Pd lower bound

% k = vector of signal lengths associated with pd

% Get (m,n) pairs meeting FAR spec

nsol=5;

[mv,nv,log10Tv]=mofn_far_spec(p0,log10T,nsol);

while max(nv)<Lmax+1,

nsol=nsol+1;

[mv,nv,log10Tv]=mofn_far_spec(p0,log10T,nsol);

end;

nsol=find(nv>Lmax,1,’first’);

mv=mv(1:nsol);

nv=nv(1:nsol);

pd=zeros(1,Lmax);

[pd0,k0]=mofn_pd_k_less_n(p1,mv(1),nv(1));

B.mv(1)=mv(1); % currently active value of m

B.nv(1)=nv(1);

B.L0(1)=1; % first signal length for this region

B.L1c(1)=nv(1);

ir=1;

pd(k0)=pd0;

k_new=[];

for i=1:(nsol-1),

[pd1,k1]=mofn_pd_k_less_n(p1,mv(i+1),nv(i+1));

if pd1(end)>pd0(end),

ir=ir+1;

B.mv(ir)=mv(i+1);

B.nv(ir)=nv(i+1);

B.L0(ir)=find(pd1>pd0(end),1,’first’);

B.L1c(ir)=nv(i+1);

B.L1(ir-1)=B.L0(ir)-1;
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% Interim region is flat at previous Pd (lower bound)

k_int=B.L1c(ir-1):min([Lmax B.L1(ir-1)]);

pd(k_int)=pd0(end)*ones(size(k_int));

% Fill in up to end of new value of m

k_new=B.L0(ir):min(Lmax,nv(i+1));

pd(k_new)=pd1(k_new);

pd0=pd1;

end;

end;

npd=length(pd);

if any(k_new),

pd(k_new(end):npd)=pd1(k_new(end):npd);

end;

B.L1(ir)=Lmax;

k=1:length(pd);%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [m0,n0,T0,D0,I0]=mofn_opt_mn_T_and_D(p0,p1,log10T)

% [m0,n0,T0,D0,I0]=mofn_opt_mn_T_and_D(p0,p1,log10T)

% p0 = noise-only success probability

% p1 = noise+signal success probability

% log10T = log10(Tbar) FAR specification (can be a vector)

%

% m0 = optimal value of m

% n0 = optimal value of n

% T0 = achieved average time between false alarms

% D0 = achieved latency

% I0 = structure containing initialization

% Initial starting point

[ms0,ns0]=mofn_opt_mn_T_and_D_init(p0,p1,log10T);

I0.ms=ms0;

I0.ns=ns0;

for i=1:length(log10T),

fprintf(’.’);

nsol=ms0(i)-ceil(log10T(i)/log10(p0))+5;

[ms,ns,log10Ts]=mofn_far_spec(p0,log10T(i),nsol);

Dmin=inf;

isol=find(ms==ms0(i));

Ds1=mofn_stats_cfcn(p1,ms(isol),ns(isol));

I0.D(i)=Ds1;

I0.T(i)=10^log10Ts(isol);

% Back up until increasing

Ds0=Ds1-1;

i0=isol-1;
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Ds2=[];

while (i0>=1)&&(Ds0<Ds1),

Ds0=mofn_stats_cfcn(p1,ms(i0),ns(i0));

% Initialization beyond minimum, move down again

if Ds0<Ds1,

isol=i0;

i0=i0-1;

Ds2=Ds1;

Ds1=Ds0;

end;

end;

% Increase until at minimum if haven’t already found it

if ~any(Ds2),

Ds2=Ds1-1;

while (Ds2<Ds1)&&(isol<nsol),

% Evaluate D

Ds2=mofn_stats_cfcn(p1,ms(isol+1),ns(isol+1));

% Not at minimum yet, keep going

if Ds2<Ds1,

isol=isol+1;

Ds1=Ds2;

end;

end;

end;

m0(i)=ms(isol);

n0(i)=ns(isol);

D0(i)=Ds1;

T0(i)=10.^log10Ts(isol);

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ms,ns]=mofn_opt_mn_T_and_D_init(p0,p1,log10T)

% [ms,ns]=mofn_opt_mn_T_and_D_init(p0,p1,log10T)

% Returns the starting point design (ms,ns) to minimize

% Dbar given p0, p1, and log10T

% Get efficiency from Page’s test & Dbar

b1=1/(1+log(p1/p0)/log((1-p0)/(1-p1)));

[~,~,eta]=page_stats_bino(p0,p1,b1,1);

Dp=log10T/(eta*log10(exp(1)));

for i=1:length(log10T),

% Get Pd breakpoints

[B,~,~]=mofn_pd_breakpoint(p0,p1,log10T(i),5*ceil(Dp(i)));

% Find m maximizing Pd for signal of length Dbar from Page’s test

iopt=find(B.L0<=Dp(i),1,’last’);
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ms(i)=B.mv(iopt);

ns(i)=B.nv(iopt);

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [T,D,eta]=page_stats_bino(p0,p1,b,h)

% [T,D,eta]=page_stats_bino(p0,p1,b,h)

% Returns performance measures for Page’s test

% operating on binary data

% p0 = noise-only success probability

% p1 = noise+signal success probability

% b = bias

% h = threshold

TOL=1e-4;

% Get unity roots of MGF

t0=mgf_root_bino(p0,b,TOL);

t1=mgf_root_bino(p1,b,TOL);

% Approximations

ug0=p0-b;

ug1=p1-b;

T=nan*ones(size(h));

D=T;

ib=find(h>1-b);

T(ib)=(1+h(ib)*t0-exp(h(ib)*t0))./(t0*ug0);

D(ib)=(1+h(ib)*t1-exp(h(ib)*t1))./(t1*ug1);

eta=t0*ug1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function t=mgf_root_bino(p,b,TOL)

% t=mgf_root_bino(p,b,TOL)

% Returns the unity root of the moment generating function (MGF)

% for binary data with success probability p and bias b

if nargin<3,

TOL=1e-6;

end;

if (p-b)<0,

t=-log(p)/(1-b);

else

t=log(1-p)/b;

end;

err=2*TOL;

while err>TOL,

f=log(p*exp((1-b)*t)+(1-p)*exp(-b*t));

dfdt=(p*(1-b)*exp(t*(1-b))-b*(1-p)*exp(-t*b))/(p*exp((1-b)*t)+(1-p)*exp(-b*t));

t=t-f/dfdt;
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err=abs(f/dfdt);

end;
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